<small id="yw6wi"></small><strike id="yw6wi"><input id="yw6wi"></input></strike>
  • <strike id="yw6wi"></strike>
  • <fieldset id="yw6wi"></fieldset>
  • <tfoot id="yw6wi"><input id="yw6wi"></input></tfoot>
  • <fieldset id="yw6wi"></fieldset>
  • 論文格式
    電氣工程 會(huì)計(jì)論文 金融論文 國(guó)際貿(mào)易 財(cái)務(wù)管理 人力資源 輕化工程 德語(yǔ)論文 工程管理 文化產(chǎn)業(yè)管理 信息計(jì)算科學(xué) 電氣自動(dòng)化 歷史論文
    機(jī)械設(shè)計(jì) 電子通信 英語(yǔ)論文 物流論文 電子商務(wù) 法律論文 工商管理 旅游管理 市場(chǎng)營(yíng)銷 電視制片管理 材料科學(xué)工程 漢語(yǔ)言文學(xué) 免費(fèi)獲取
    制藥工程 生物工程 包裝工程 模具設(shè)計(jì) 測(cè)控專業(yè) 工業(yè)工程 教育管理 行政管理 應(yīng)用物理 電子信息工程 服裝設(shè)計(jì)工程 教育技術(shù)學(xué) 論文降重
    通信工程 電子機(jī)電 印刷工程 土木工程 交通工程 食品科學(xué) 藝術(shù)設(shè)計(jì) 新聞專業(yè) 信息管理 給水排水工程 化學(xué)工程工藝 推廣賺積分 付款方式
    • 首頁(yè) |
    • 畢業(yè)論文 |
    • 論文格式 |
    • 個(gè)人簡(jiǎn)歷 |
    • 工作總結(jié) |
    • 入黨申請(qǐng)書 |
    • 求職信 |
    • 入團(tuán)申請(qǐng)書 |
    • 工作計(jì)劃 |
    • 免費(fèi)論文 |
    • 現(xiàn)成論文 |
    • 論文同學(xué)網(wǎng) |
    搜索 高級(jí)搜索

    當(dāng)前位置:論文格式網(wǎng) -> 免費(fèi)論文 -> 其他論文

    納米金屬材料:進(jìn)展和挑戰(zhàn)

    本論文在其他論文欄目,由論文格式網(wǎng)整理,轉(zhuǎn)載請(qǐng)注明來源www.donglienglish.cn,更多論文,請(qǐng)點(diǎn)論文格式范文查看  納米金屬材料:進(jìn)展和挑戰(zhàn)
    1引言40多年以前,科學(xué)家們就認(rèn)識(shí)到實(shí)際材料中的無序結(jié)構(gòu)是不容忽視的。許多新發(fā)現(xiàn)的物理效應(yīng),諸如某些相轉(zhuǎn)變、量子尺寸效應(yīng)和有關(guān)的傳輸現(xiàn)象等,只出現(xiàn)在含有缺陷的有序固體中。事實(shí)上,如果多晶體中晶體區(qū)的特征尺度(晶粒或晶疇直徑或薄膜厚度)達(dá)到某種特征長(zhǎng)度時(shí)(如電子波長(zhǎng)、平均自由程、共格長(zhǎng)度、相關(guān)長(zhǎng)度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數(shù)、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認(rèn)為,如果能夠合成出晶粒尺寸在納米量級(jí)的多晶體,即主要由非共格界面構(gòu)成的材料[例如,由 50%(in vol.)的非共植晶界和 50%(in vol.)的晶體構(gòu)成],其結(jié)構(gòu)將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystalline materials)。后來,人們又將晶體區(qū)域或其它特征長(zhǎng)度在納米量級(jí)范圍(小于 100nn)的材料廣義定義為"納米材料"或"納米結(jié)構(gòu)材料"(nanostructured materials)。由于其獨(dú)特的微結(jié)構(gòu)和奇異性能,納米材料引起了科學(xué)界的極大關(guān)注,成為世界范圍內(nèi)的研究熱點(diǎn),其領(lǐng)域涉及物理、化學(xué)、生物、微電子等諸多學(xué)科。目前,廣義的納米材料的主要包括:l)清潔或涂層表面的金屬、半導(dǎo)體或聚合物薄膜;2)人造超晶格和量子講結(jié)構(gòu);功半結(jié)晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價(jià)鍵或分子組元構(gòu)成的納米復(fù)合材料。經(jīng)過最近十多年的研究與探索,現(xiàn)已在納米材料制備方法、結(jié)構(gòu)表征、物理和化學(xué)性能、實(shí)用化等方面取得顯著進(jìn)展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學(xué)與工程的角度,介紹與評(píng)述納米金屬材料的某些研究進(jìn)展。2納米材料的制備與合成材料的納米結(jié)構(gòu)化可以通過多種制備途徑來實(shí)現(xiàn)。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預(yù)先制備的孤立納米顆粒因結(jié)成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學(xué)氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學(xué)沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產(chǎn)生相或結(jié)構(gòu)轉(zhuǎn)變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機(jī)械球磨、嚴(yán)重塑性形變、滑動(dòng)磨損、高能粒子輻照和火花蝕刻等。目前,關(guān)于制備科學(xué)的研究主要集中于兩個(gè)方面:l)納米粉末制備技術(shù)、理論機(jī)制和模型。目的是改進(jìn)納米材料的品質(zhì)和產(chǎn)量;2)納米粉末的固結(jié)技術(shù)。以獲得密度和微結(jié)構(gòu)可控的塊體材料或表面覆層。3納米材料的奇異性能1)原子的擴(kuò)散行為原子擴(kuò)散行為影響材料的許多性能,諸如蠕變、超塑性、電性能和燒結(jié)性等。納米晶Co的自擴(kuò)散系數(shù)比Cu的體擴(kuò)散系數(shù)大14~16個(gè)量級(jí),比Cu的晶界自擴(kuò)散系數(shù)大3個(gè)量級(jí)。Wurshum等最近的工作表明:Fe在納米晶N中的擴(kuò)散系數(shù)遠(yuǎn)低于早期報(bào)道的結(jié)果。納米晶Pd的界面擴(kuò)散數(shù)據(jù)類似于普通的晶界擴(kuò)散,這很可能是由于納米粒子固結(jié)成的塊狀試樣中的殘留疏松的影響。他們還報(bào)道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的復(fù)相納米合金(由Fe3Si納米金屬間化合物和晶間的非晶相構(gòu)成)中的擴(kuò)散要比在非晶合金中快10~14倍,這是由于存在過剩的熱平衡空位。Fe在Fe-Si納米晶中的擴(kuò)散由空位調(diào)節(jié)控制。2)力學(xué)性能目前,關(guān)于納米材料的力學(xué)性能研究,包括硬度、斷裂韌性、壓縮和拉伸的應(yīng)力一應(yīng)變行為、應(yīng)變速率敏感性、疲勞和蠕變等已經(jīng)相當(dāng)廣泛。所研究的材料涉及不同方法制備的純金屬、合金、金屬間化合物、復(fù)合材料和陶瓷。研究納米材料本征力學(xué)性能的關(guān)鍵是獲得內(nèi)部沒有(或很少)孔隙、雜質(zhì)或裂紋的塊狀試樣。由于試樣內(nèi)有各種缺陷,早期的許多研究結(jié)果已被最近取得的結(jié)果所否定。樣品制備技術(shù)的日臻成熟與發(fā)展,使人們對(duì)納米材料本征力學(xué)性能的認(rèn)識(shí)不斷深入。許多納米純金屬的室溫硬度比相應(yīng)的粗晶高2~7倍。隨著晶粒的減小,硬度增加的現(xiàn)象幾乎是不同方法制備的樣品的一致表現(xiàn)。早期的研究認(rèn)為,納米金屬的彈性模量明顯低于相應(yīng)的粗晶材料。例如,納米晶Pd的楊氏和剪切模量大約是相應(yīng)全密度粗晶的70%。然而,最近的研究發(fā)現(xiàn),這完全是樣品中的缺陷造成的,納米晶Pd和Cu的彈性常數(shù)與相應(yīng)粗晶大致相同,屈服強(qiáng)度是退火粗晶的10~15倍。晶粒小子50nm的Cu韌性很低,總延伸率僅1%~4%,晶粒尺寸為 110nm的 Cu延伸率大于 8%。從粗晶到 15urn,Cu的硬度測(cè)量值滿足 HallPetch關(guān)系;小于15nm后,硬度隨晶粒尺寸的變化趨于平緩,雖然硬度值很高,但仍比由粗晶數(shù)據(jù)技HallPetch關(guān)系外推或由硬度值轉(zhuǎn)換的估計(jì)值低很多。不過,納米晶Cu的壓縮屈服強(qiáng)度與由粗晶數(shù)據(jù)的HallPetCh關(guān)系外推值和測(cè)量硬度的值(Hv/3)非常吻合,高密度納米晶 Cu牙D Pd的壓縮屈服強(qiáng)度可達(dá)到 1GPa量級(jí)。盡管按照常規(guī)力學(xué)性能與晶粒尺寸關(guān)系外推,納米材料應(yīng)該既具有高強(qiáng)度,又有較高韌性。但迄今為止,得到的納米金屬材料的韌性都很低。晶粒小于25nm時(shí),其斷裂應(yīng)變僅為<5%,遠(yuǎn)低于相應(yīng)粗晶材料。主要原因是納米晶體材料中存在各類缺陷、微觀應(yīng)力及界面狀態(tài)等。用適當(dāng)工藝制備的無缺陷、無微觀應(yīng)力的納米晶體Cu,其拉伸應(yīng)變量可高達(dá)30%,說明納米金屬材料的韌性可以大幅度提高。納米材料的塑性變形機(jī)理研究有待深入。納米晶金屬間化合物的硬度測(cè)試值表明,隨著晶粒的減小,在初始階段(類似于純金屬盼情況)發(fā)生硬化,進(jìn)一步減小晶粒,硬化的斜率減緩或者發(fā)生軟化。由硬化轉(zhuǎn)變?yōu)檐浕男袨槭窍喈?dāng)復(fù)雜的,但這些現(xiàn)象與樣品的制備方法無關(guān)。材料的熱處理和晶粒尺寸的變化可能導(dǎo)致微觀結(jié)構(gòu)和成份的變化,如晶界、致密性、相變、應(yīng)力等,都可能影響晶粒尺寸與硬度的關(guān)系。研究納米晶金屬間化合物的主要?jiǎng)訖C(jī)是探索改進(jìn)金屬間化合物的室溫韌性的可能性。Bohn等首先提出納米晶金屬化合物幾種潛在的優(yōu)越性。其中包括提高強(qiáng)度和韌性。Haubold及合作者研究了IGC法制備的NiAl的力學(xué)性能,但僅限于單一樣品在不同溫度退火后的硬度測(cè)量。Smith通過球磨NiAl得到晶粒尺寸從微米級(jí)至納米級(jí)的樣品,進(jìn)行了"微型盤彎曲試驗(yàn)",觀察到含碳量低的材料略表現(xiàn)出韌性,而含碳多的材料沒有韌性。最近Choudry等用"雙向盤彎曲試驗(yàn)"研究了納米晶NiAl,發(fā)現(xiàn)晶粒小于10nm時(shí),屈服強(qiáng)度高干粗晶NiAl,且在室溫下有韌性,對(duì)形變的貢獻(xiàn)主要源于由擴(kuò)散控制的晶界滑移。室溫壓縮實(shí)驗(yàn)顯示由球磨粉末固結(jié)成的納米晶Fe-28Al-2Cr具有良好的塑性(真應(yīng)變大于1.4),且屈服強(qiáng)度高(是粗晶的1O倍)。測(cè)量TiAl(平均晶粒尺寸約10nm)的壓縮蠕變(高溫下測(cè)量硬度隨著恒載荷加載時(shí)間的變化)表明,在起始的快速蠕變之后,第二階段蠕變非常緩慢,這意味著發(fā)生了擴(kuò)散控制的形變過程。低溫時(shí)(低于擴(kuò)散蠕變開始溫度),納米晶的硬度變化很小。觀察到的硬度隨著溫度升高而下降,原因之一是壓頭載荷使樣品進(jìn)一步致密化,而主要是因?yàn)椴牧狭髯兗涌臁ishra等報(bào)道,在750~950°C,10-5~10-3s-1的應(yīng)變速率范圍,納米晶Ti-47.5Al-3Cr(g-TiAl)合金的形變應(yīng)力指數(shù)約為6,說明其形變機(jī)制為攀移位錯(cuò)控制。值得注意的是,最近報(bào)道了用分子動(dòng)力學(xué)計(jì)算機(jī)模擬研究納米材料的致密化過程和形變。納米Cu絲的模擬結(jié)果表明,高密度晶界對(duì)力學(xué)行為和塑性變形過程中的晶界遷移有顯著影響。納米晶(3~5nm)Ni在低溫高載荷塑性變形的模擬結(jié)果顯示,其塑性變形機(jī)制主是界面的粘滯流動(dòng)、晶界運(yùn)動(dòng)和晶界旋轉(zhuǎn),不發(fā)生開裂和位錯(cuò)發(fā)散,這與粗晶材料是截然不同的。3)納米晶金屬的磁性早期的研究發(fā)現(xiàn)。納米晶Fe的飽和磁化強(qiáng)度試比普通塊材a-Fe約低40%。Wagner等用小角中子散射(SANS)實(shí)驗(yàn)證實(shí)納米晶Fe由鐵磁性的晶粒和非鐵磁性(或弱鐵磁性)的界面區(qū)域構(gòu)成,界面區(qū)域體積約占一半。納米晶Fe的磁交互作用不僅限于單個(gè)晶粒,而且可以擴(kuò)展越過界面,使數(shù)百個(gè)晶粒磁化排列。Daroezi等證實(shí)球磨形成的納米晶Fe和Ni的飽和磁化強(qiáng)度與晶粒尺寸(50mm~7nm)無關(guān),但納米晶的飽和磁化曲線形狀不同于微米晶材料。隨著晶粒減小,矯頑力顯著增加。Schaefer等報(bào)道,納米晶Ni中界面原子的磁拒降低至0.34mB/原子(塊狀Ni為0.6mB/原子),界面組份的居里溫度(545K)比塊狀晶體Ni的(630K)低。最近的研究還發(fā)現(xiàn),制備時(shí)殘留在納米晶Ni中的內(nèi)應(yīng)力對(duì)磁性的影響很大,納米晶Ni的飽和磁化強(qiáng)度與粗晶Ni基本相同。Yoshizawa等報(bào)道了快淬的FeCuNbSiB非晶在初生晶化后,軟磁性能良好,可與被莫合金和最好的Co基調(diào)合金相媲美,且飽和磁化強(qiáng)度很高(Bs約為1.3T)。其典型成份為Fe73.5Cu1Nb3Si13.5B9稱為"Finemet"。性能最佳的結(jié)構(gòu)為a-Fe(Si)相(12~20nm)鑲嵌在剩余的非晶格基體上。軟磁性能好的原因之一被認(rèn)為是鐵磁交互作用。單個(gè)晶粒的局部磁晶體各向異性被有效地降低。其二是晶化處理后,形成富Si的a-Fe相,他和磁致伸縮系數(shù)ls下降到 2′10-6。繼 Finemet之后, 90年代初又發(fā)展了新一族納米晶軟磁合金 Fe-Zr-(Cu)-B-(Si)系列(稱為'Nanoperm")。退火后,這類合金形成的bcc相晶粒尺寸為10~20nm,飽和磁化強(qiáng)度可達(dá)1.5~1.7T,磁導(dǎo)率達(dá)到48000(lkHz)。鐵芯損耗低,例如,F(xiàn)e86Zr7B6Cu1合金的鐵芯損耗為66mW·g-1(在 1T, 50Hz條件下),比目前做變壓器鐵芯的 Fe78Si9B13非晶合金和 bccFe-3.5%Si合金小45%和 95%,實(shí)用前景非常誘人。4)催化及貯氫性能在催化劑材料中,反應(yīng)的活性位置可以是表面上的團(tuán)簇原子,或是表面上吸附的另一種物質(zhì)。這些位置與表面結(jié)構(gòu)、晶格缺陷和晶體的邊角密切相關(guān)。由于納米晶材料可以提供大量催化活性位置,因此很適宜作催化材料。事實(shí)上,早在術(shù)語(yǔ)"納米材料"出現(xiàn)前幾十年,已經(jīng)出現(xiàn)許多納米結(jié)構(gòu)的催化材料,典型的如 Rh/Al2O3、 Pt/C之類金屬納米顆粒彌散在情性物質(zhì)上的催化劑。已在石油化工、精細(xì)化工合成、汽車排氣許多場(chǎng)合應(yīng)用。Sakas等報(bào)道了納米晶5%(in mass)Li-MgO(平均直徑5.2nm,比表面面積750m2·g-1)的催化活性。它對(duì)甲烷向高級(jí)烴轉(zhuǎn)化的催化效果很好,催化激活溫度比普通Li浸滲的MgO至少低200°C,盡管略有燒結(jié)發(fā)生,納米材料的平均活性也比普通材料高3.3倍。Ying及合作者利用惰性氣氛冷凝法制成高度非化學(xué)當(dāng)量的CeO2-x納米晶體,作為CO還原SO2、CO氧化和CH4氧化的反應(yīng)催化劑表現(xiàn)出很高的活性。活化溫度低于超細(xì)的化學(xué)當(dāng)量CeO2基材料。例如,選擇性還原SO2為S的反應(yīng),可在500°C實(shí)現(xiàn)100%轉(zhuǎn)換,而由化學(xué)沉淀得到的超細(xì)CeO2粉末,活化溫度高達(dá)600°C。摻雜Cu的Cu-CeO2-x納米復(fù)合材料可以使SO2的反應(yīng)溫度降低到420°C。另外,CeO2-x納米晶在SO2還原反應(yīng)中沒有活性滯后,且具有超常的抗CO2毒化能力。還能使CO完全轉(zhuǎn)化為CO2的氧化反應(yīng)在低于100°C時(shí)進(jìn)行,這對(duì)冷起動(dòng)的汽車排氣控制非常有利。值得注意的是這樣的催化劑僅由較便宜的金屬構(gòu)成,毋須添加資金屬元素。FeTi和Mg2Ni是貯氫材料的重要候選合金。其缺點(diǎn)是吸氫很慢,必須進(jìn)行活化處理, 即多次地進(jìn)行吸氫----脫氫過程。Zaluski等最近報(bào)道,用球磨Mg和Ni粉末可直接形成化學(xué) 當(dāng)量的Mg2Ni,晶粒平均尺寸為 20~30nm,吸氫性能比普通多晶材料好得多。普通多晶 Mg2Ni 的吸氫只能在高溫下進(jìn)行(如果氫壓力小于20Pa,溫度必須高于250°C),低溫吸氫則需要長(zhǎng)時(shí)間和高的氫壓力,例如 200°C、120bar(lbar=0.1Mpa),2天。納米晶 Mg2Ni在 200°C以下, 即可吸氫,毋須活化處理。 300°C第一次氫化循環(huán)后,含氫可達(dá)~3.4%(in mass)。在以后的循環(huán)過程中,吸氫比普通多晶材料快4倍。納米晶FeTi的吸氫活化性能明顯優(yōu)于普通多晶材料。普通多晶FeTi的活化過程是:在真空中加熱到400~450℃,隨后在約7Pa的H2中退火、冷卻至室溫再暴露于壓力較高(35~65Pa)的氫中,激活過程需重復(fù)幾次。而球磨形成的納米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氫吸收循環(huán)。納米晶FeTi合金由納米晶粒和高度無序的晶界區(qū)域(約占材料的20%~30%)構(gòu)成。納米材料應(yīng)用示例目前納米材料主要用于下列方面:l)高硬度、耐磨WC-Co納米復(fù)合材料納米結(jié)構(gòu)的WC-Co已經(jīng)用作保護(hù)涂層和切削工具。這是因?yàn)榧{米結(jié)構(gòu)的WC-Co在硬度、耐磨性和韌性等方面明顯優(yōu)于普通的粗晶材料。其中,力學(xué)性能提高約一個(gè)量級(jí),還可能進(jìn)一步提高。高能球磨或者化學(xué)合成WC-Co納米合金已經(jīng)工業(yè)化。化學(xué)合成包括三個(gè)主要步驟:起始溶液的制備與混和;噴霧干燥形成化學(xué)性均勻的原粉末;再經(jīng)流床熱化學(xué)轉(zhuǎn)化成為納米晶WC-Co粉末。噴霧干燥和流床轉(zhuǎn)化已經(jīng)用來批量生產(chǎn)金屬碳化物粉末。WC-Co粉末可在真空或氫氣氛下液相燒結(jié)成塊體材料。VC或Cr3C2等碳化物相的摻雜,可以抑制燒結(jié)過程中的晶粒長(zhǎng)大。2)納米結(jié)構(gòu)軟磁材料Finemet族合金已經(jīng)由日本的Hitachi Special Metals,德國(guó)的Vacuumschmelze GmbH和法國(guó)的 Imply等公司推向市場(chǎng),已制造銷售許多用途特殊的小型鐵芯產(chǎn)品。日本的 Alps Electric Co.一直在開發(fā)Nanoperm族合金,該公司與用戶合作,不斷擴(kuò)展納米晶Fe-Zr-B合金的應(yīng)用領(lǐng)域。3)電沉積納米晶Ni電沉積薄膜具有典型的柱狀晶結(jié)構(gòu),但可以用脈沖電流將其破碎。精心地控制溫度、pH值和鍍池的成份,電沉積的Ni晶粒尺寸可達(dá)10nm。但它在350K時(shí)就發(fā)生反常的晶粒長(zhǎng)大,添加溶質(zhì)并使其偏析在晶界上,以使之產(chǎn)生溶質(zhì)拖拽和Zener粒子打軋效應(yīng),可實(shí)現(xiàn)結(jié)構(gòu)的穩(wěn)定。例如,添加千分之幾的磷、流或金屬元素足以使納米結(jié)構(gòu)穩(wěn)定至600K。電沉積涂層脈良好的控制晶粒尺寸分布,表現(xiàn)為Hall-Petch強(qiáng)化行為、純Ni的耐蝕性好。這些性能以及可直接涂履的工藝特點(diǎn),使管材的內(nèi)涂覆,尤其是修復(fù)核蒸汽發(fā)電機(jī)非常方便。這種技術(shù)已經(jīng)作為 EectrosleeveTM工藝商業(yè)化。在這項(xiàng)應(yīng)用中,微合金化的涂層晶粒尺寸約為 100nm,材料的拉伸強(qiáng)度約為鍛造Ni的兩倍,延伸率為15%。晶間開裂抗力大為改善。4)Al基納米復(fù)合材料Al基納米復(fù)合材料以其超高強(qiáng)度(可達(dá)到1.6GPa)為人們所關(guān)注。其結(jié)構(gòu)特點(diǎn)是在非晶基體上彌散分布著納米尺度的a-Al粒子,合金元素包括稀土(如 Y、 Ce)和過渡族金屬(如 Fe、Ni)。通常必須用快速凝固技術(shù)(直接淬火或由初始非晶態(tài)通火)獲得納米復(fù)合結(jié)構(gòu)。但這只能得到條帶或霧化粉末。納米復(fù)合材料的力學(xué)行為與晶化后的非晶合金相類似,即室溫下超常的高屈服應(yīng)力和加工軟化(導(dǎo)致拉神狀態(tài)下的塑性不穩(wěn)定性)。這類納米材料(或非晶)可以固結(jié)成塊材。例如,在略低于非晶合金的晶化溫度下溫?cái)D。加工過程中也可以完全轉(zhuǎn)變?yōu)榫w,晶粒尺寸明顯大干部份非晶的納米復(fù)合材料。典型的Al基體的晶粒尺寸為100~200nm,鑲嵌在基體上的金屬間化合物粒子直徑約50nm。強(qiáng)度為0.8~1GPa,拉伸韌性得到改善。另外,這種材料具有很好的強(qiáng)度與模量的結(jié)合以及疲勞強(qiáng)度。溫?cái)DAl基納米復(fù)合材料已經(jīng)商業(yè)化,注冊(cè)為GigasTM。霧化的粉末可以固結(jié)成棒材,并加工成小尺寸高強(qiáng)度部件。類似的固結(jié)材料在高溫下表現(xiàn)出很好的超塑性行為:在1s-1的高應(yīng)變速率下,延伸率大于500%。5結(jié)語(yǔ)在過去十多年里,盡管納米材料的研究已經(jīng)取得了顯著進(jìn)展,但許多重要問題仍有待探索和解決。諸如,如何獲得清潔、無孔隙、大尺寸的塊體納米材料,以真實(shí)地反映納米材料的本征結(jié)構(gòu)與性能?如何開發(fā)新的制備技術(shù)與工藝,實(shí)現(xiàn)高品質(zhì)、低成本、多品種的納米材料產(chǎn)業(yè)化?納米材料的奇異性能是如何依賴于微觀結(jié)構(gòu)(晶粒尺寸與形貌、晶界等缺陷的性質(zhì)、合金化等)的?反之,如何利用微觀結(jié)構(gòu)的設(shè)計(jì)與控制,發(fā)展具有新穎性能的納米材料,以拓寬納米材料的應(yīng)用領(lǐng)域?某些傳統(tǒng)材料的局域納米化能否為其注入新的生命力?如何實(shí)現(xiàn)納米材料的功能與結(jié)構(gòu)一體化?如何使納米材料在必要的后續(xù)處理或使用過程中保持結(jié)構(gòu)與性能的穩(wěn)定性?等等。這些基本問題是進(jìn)一步深入研究納米材料及其實(shí)用化的關(guān)鍵,也是納米材料研究被稱為"高風(fēng)險(xiǎn)與高回報(bào)并存"的原因。我國(guó)系統(tǒng)開展納米材料的科學(xué)研究始于80年代末,經(jīng)過近十年的努力,已經(jīng)做出了一批高水平、有國(guó)際影響的工作。整體水平和實(shí)力緊步美、日、德等主要西方國(guó)家之后,受到國(guó)際學(xué)術(shù)界的高度重視。然而,在激烈的國(guó)際競(jìng)爭(zhēng)形勢(shì)下,急需以現(xiàn)有工作為基礎(chǔ),以若干學(xué)科為突破目標(biāo),集中人力、物力、財(cái)力的投入,使我國(guó)在這一領(lǐng)域的研究水平上一個(gè)新臺(tái)階。


    相關(guān)論文
    上一篇:關(guān)于IT產(chǎn)品的銷售的思考 下一篇:加強(qiáng)商業(yè)銀行內(nèi)控機(jī)制建設(shè)
    Tags:納米 金屬材料 進(jìn)展 挑戰(zhàn) 【收藏】 【返回頂部】
    人力資源論文
    金融論文
    會(huì)計(jì)論文
    財(cái)務(wù)論文
    法律論文
    物流論文
    工商管理論文
    其他論文
    保險(xiǎn)學(xué)免費(fèi)論文
    財(cái)政學(xué)免費(fèi)論文
    工程管理免費(fèi)論文
    經(jīng)濟(jì)學(xué)免費(fèi)論文
    市場(chǎng)營(yíng)銷免費(fèi)論文
    投資學(xué)免費(fèi)論文
    信息管理免費(fèi)論文
    行政管理免費(fèi)論文
    財(cái)務(wù)會(huì)計(jì)論文格式
    數(shù)學(xué)教育論文格式
    數(shù)學(xué)與應(yīng)用數(shù)學(xué)論文
    物流論文格式范文
    財(cái)務(wù)管理論文格式
    營(yíng)銷論文格式范文
    人力資源論文格式
    電子商務(wù)畢業(yè)論文
    法律專業(yè)畢業(yè)論文
    工商管理畢業(yè)論文
    漢語(yǔ)言文學(xué)論文
    計(jì)算機(jī)畢業(yè)論文
    教育管理畢業(yè)論文
    現(xiàn)代教育技術(shù)論文
    小學(xué)教育畢業(yè)論文
    心理學(xué)畢業(yè)論文
    學(xué)前教育畢業(yè)論文
    中文系文學(xué)論文
    最新文章
    熱門文章
    計(jì)算機(jī)論文
    推薦文章

    本站部分文章來自網(wǎng)絡(luò),如發(fā)現(xiàn)侵犯了您的權(quán)益,請(qǐng)聯(lián)系指出,本站及時(shí)確認(rèn)刪除 E-mail:349991040@qq.com

    論文格式網(wǎng)(www.donglienglish.cn--論文格式網(wǎng)拼音首字母組合)提供其他論文畢業(yè)論文格式,論文格式范文,畢業(yè)論文范文

    Copyright@ 2010-2018 LWGSW.com 論文格式網(wǎng) 版權(quán)所有

    感谢您访问我们的网站,您可能还对以下资源感兴趣:

    论文格式网:毕业论文格式范文
    <strike id="0iow2"><input id="0iow2"></input></strike>
      <strike id="0iow2"></strike>
      <del id="0iow2"></del>