對稱性在積分中的應用 【摘要】本文研究的目的是針對幾何性質與圖形、運算在積分中的應用,利用對稱性來簡化解決問題的過程。給出了奇函數和偶函數的定義,討論了利用函數的奇偶性求解定積分、重積分、線積分、面積分等積分。在利用對稱性求解積分問題時,一般分為以下兩種情況:一是積分區域具有某種對稱性,可直接利用對稱性對問題進行求解;另一種情況就是積分區域不具有某種對稱性,或所具有的對稱性不明顯,對此應用轉化的方法,根據問題特點來構造對稱性。在求解問題的過程中,如果能充分考慮問題的對稱性并利用它,往往會做到事半功倍的效果。 【關鍵詞】 奇函數和偶函數;對稱性;積分 【Abstract】The purpose of this text research is to aim at several the property and sketch, operation is in the application in the integral calculus and make use of symmetry to simplify problem-solving process. Give strange function and even function of definition, discussed to make use of function of strange accidentally sex solve definite integral, heavy integral calculus’s, such as integral calculus, line integral calculus and area cent...etc..While making use of symmetry to solve an integral calculus problem, generally is divided into two kinds of following circumstances: on being an integral calculus district to have a certain and symmetry, can directly make use of symmetry to carry on solving to the problem; Another circumstance is an integral calculus district don't have a certain and symmetry, or the symmetry had isn't obvious, to this method that applies a conversion, construct symmetry according to the problem characteristics. In the process of solving a problem, if can well consider the symmetry of problem and make use of it, usually attain the effect of half effort and double results. 【Key words】strange function and even function;symmetry;Integration 一、奇函數和偶函數 若,有= ,則稱是偶函數。其函數圖像關于軸對稱。 若,有= ,則稱是奇函數。其函數圖像關于原點對稱。 若,有= ,則稱是上關于的偶函數。 若,有= ,則稱是上關于的奇函數。 二、奇函數和偶函數的積分特點 若是對稱區域是的偶函數,則有,其中,區域是區域的對稱一半。 若是對稱區域是的奇函數,則有,其中。 說明:及被賦予具體的含義時,就表示定積分、重積分、線積分、面積分等不同的積分,下面將具體討論利用對稱性求解積分問題的做法。 三、對稱性在中的具體應用 1、,是上的一元函數,則=,且有=2,當是偶函數。