摘 要
城市交通誘導系統是智能交通系統(ITS: Intelligent Transport System)的一個重要組成部分,誘導系統的實現基礎是對交通流數據進行有效地處理。其中包括交通流的短時預測、交通狀況的擁堵判斷以及個性化的誘導服務等。
首先,在實際的應用中,通過對交通流數據的預測,可以獲知未來一段時刻內路網中的交通發展趨勢。但實時性和準確性往往不可兼得。為了解決這個問題,本文提出一種結合周相似特性的短時交通流的分形預測方法,并對該方法的最大預測步長進行了探討。
其次,以杭州市實際數據進行實例計算,達到了預期的效果。證明所提出的理論和算法的可行性和準確性。
最后 分別簡單介紹了數據挖掘以及模式識別技術、行使路線誘導技術和多目標個性化行駛路線獲取常用算法。
關鍵詞:城市智能交通誘導系統 短時預測 分形理論 個性化行使路線
ABSTRACT
Traffic Guidance System plays an important role in the Intelligent Transport System, and the key to its establishment is whether traffic flow parameters can be dealt with effectively. Among them there are short-time traffic flow prediction、traffic condition judgments and individual guidance service and so on.
Firstly, in practical application, future traffic evolution trend could be acquired via forecasting traffic flow data. But the real-time performance and accuracy couldn’t be obtained simultaneous. To solve this problem, this paper puts forward a forecasting model based on fractal and weekly-similarly. furthermore, how many time step of this method is studied.
Secondly, Taking the actual figures of Hangzhou to calculate, the results was coherent with our expectation. Hence, proving the the theory and way of calculation both valid and reliable.
Finally,Were briefly introduced data mining and pattern recognition technology, the exercise
of multi-objective route guidance technology and personalized traffic routes for common algorithms.
Keywords:Urban Traffic Guidance System short-time prediction fractal theory individual vehicle path